# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "spectralAnomaly" in publications use:' type: software license: MIT title: 'spectralAnomaly: Detect Anomalies Using the ''Spectral Residual'' Algorithm' version: 0.1.1 doi: 10.32614/CRAN.package.spectralAnomaly abstract: Apply the spectral residual algorithm to data, such as a time series, to detect anomalies. Anomaly scores can be used to determine outliers based upon a threshold or fed into more sophisticated prediction models. Methods are based upon "Time-Series Anomaly Detection Service at Microsoft", Ren, H., Xu, B., Wang, Y., et al., (2019) . authors: - family-names: OBrien given-names: Allen email: allen.g.obrien@gmail.com repository: https://al-obrien.r-universe.dev repository-code: https://github.com/al-obrien/spectralAnomaly commit: 16b031a12210d7098b1c7be54152824168917562 url: https://al-obrien.github.io/spectralAnomaly/ contact: - family-names: OBrien given-names: Allen email: allen.g.obrien@gmail.com