Package: spectralAnomaly 0.1.1

spectralAnomaly: Detect Anomalies Using the 'Spectral Residual' Algorithm

Apply the spectral residual algorithm to data, such as a time series, to detect anomalies. Anomaly scores can be used to determine outliers based upon a threshold or fed into more sophisticated prediction models. Methods are based upon "Time-Series Anomaly Detection Service at Microsoft", Ren, H., Xu, B., Wang, Y., et al., (2019) <doi:10.48550/arXiv.1906.03821>.

Authors:Allen OBrien [aut, cre, cph]

spectralAnomaly_0.1.1.tar.gz
spectralAnomaly_0.1.1.zip(r-4.5)spectralAnomaly_0.1.1.zip(r-4.4)spectralAnomaly_0.1.1.zip(r-4.3)
spectralAnomaly_0.1.1.tgz(r-4.4-any)spectralAnomaly_0.1.1.tgz(r-4.3-any)
spectralAnomaly_0.1.1.tar.gz(r-4.5-noble)spectralAnomaly_0.1.1.tar.gz(r-4.4-noble)
spectralAnomaly_0.1.1.tgz(r-4.4-emscripten)spectralAnomaly_0.1.1.tgz(r-4.3-emscripten)
spectralAnomaly.pdf |spectralAnomaly.html
spectralAnomaly/json (API)
NEWS

# Install 'spectralAnomaly' in R:
install.packages('spectralAnomaly', repos = c('https://al-obrien.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/al-obrien/spectralanomaly/issues

On CRAN:

3.30 score 2 stars 3 scripts 145 downloads 3 exports 0 dependencies

Last updated 2 months agofrom:16b031a122. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winOKNov 15 2024
R-4.5-linuxOKNov 15 2024
R-4.4-winOKNov 15 2024
R-4.4-macOKNov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:anomaly_scoreanomaly_threshsaliency_map

Dependencies: